вот, например
Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Решение интегралов Алгебра матриц Площадь плоской криволинейной трапеции. Тройной интеграл в цилиндрических и сферических координатах Вычисление двойного интеграла в декартовых координатах Двойной интеграл в полярных координатах

Решение задач типового расчета по математике

Двойной интеграл в полярных координатах

Если область интегрирования D - круг или часть круга, то обычно двойной интеграл вычислить легче, если перейти к полярным координатам. Полярный полюс помещается в начало декартовых координат, полярная ось направлена вдоль оси Ох. Формулы перехода к полярным координатам:

Дифференциал площади в полярных координатах равен

ds = rdrdφ

С учётом формул (10), (11) находим:

Двойные интегралы в полярных координатах выражаются через двукратные интегралы вида

Рис 6. - Область интегрирования, не содержащая начало координат

Рис 7. - Область интегрирования, содержащая начало координат

Если область D содержит начало координат (рисунок 7), то

 


Вычисление длины дуги кривой Математика решение задач