Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Решение интегралов Алгебра матриц Площадь плоской криволинейной трапеции. Тройной интеграл в цилиндрических и сферических координатах Вычисление двойного интеграла в декартовых координатах Двойной интеграл в полярных координатах

Решение задач типового расчета по математике

Переход к сферическим координатам осуществляется функциями

r - расстояние точки M от начала координат (длина радиус-вектора точки);

- угол между радиус-вектором и положительным направлением оси OZ;

- угол между положительным направлением оси OX и проекцией радиус-вектора на плоскость XOY, отсчитываемый против часовой стрелки (полярный угол).

Границы изменения сферических координат для всех точек пространства

Связь сферических и декартовых координат:

Замена переменных в тройном интеграле осуществляется в общем случае по формуле, аналогичной формуле замены переменных в двойном интеграле. В частности, при переходе к сферическим координатам эта формула имеет вид:

I - это определитель Якоби, имеющий вид:

т.к. и .

Формула перевода тройного интеграла к сферическим координатам:

 


Вычисление длины дуги кривой Математика решение задач