Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Вычисление двойных и тройных интегралов Приложения тройного интеграла Тройной интеграл в декартовых координатах Тройной интеграл в сферических координатах Формула Грина. Поток векторного поля через поверхность

Решение задач типового расчета по математике

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

  Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

,

где область интегрирования V (круговой цилиндр) можно задать системой неравенств:  при R = 0,5 и H = 2

Для определения массы цилиндра нужно вычислить трехкратный интеграл:

.

Вычислим внутренний интеграл по переменной z: .

Затем находим интеграл по переменной r:

 Третий этап – вычисление внешнего интеграла по переменной φ:

.

Ответ:  ед. массы.

 


Исследовать поведение функции в окрестности точки с помощью формулы Тейлора Математика решение задач