Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Вычисление двойных и тройных интегралов Приложения тройного интеграла Тройной интеграл в декартовых координатах Тройной интеграл в сферических координатах Формула Грина. Поток векторного поля через поверхность

Решение задач типового расчета по математике

 

Криволинейный интеграл II рода (по координатам)

Общий вид криволинейного интеграла II рода (по координатам):

,

где BC – это дуга пространственной линии от точки B до точки C с указанным на ней направлением,  P (x, y, z), Q (x, y, z), R (x, y, z) – некоторые функции, заданные во всех точках дуги BC.

В двумерном случае: , где BCxOy.

Если P (x, y), Q (x, y) – проекции на оси Ox и Oy вектора переменной силы , то

 А = (13)

– это работа силы  при перемещении точки ее приложения вдоль участка дуги BC.

Пусть кривая BC задана параметрически:  причем функции x (t) и y (t) – непрерывны и дифференцируемы по t, а tB, tC – значения параметра для начала и конца кривой (в точках B и C). Тогда

и вычисление криволинейного интеграла сводится к вычислению определенного интеграла по переменной t:

.

 


Исследовать поведение функции в окрестности точки с помощью формулы Тейлора Математика решение задач